Cardiac-restricted overexpression of extracellular matrix metalloproteinase inducer causes myocardial remodeling and dysfunction in aging mice

心脏限制性细胞外基质金属蛋白酶诱导剂过度表达导致衰老小鼠心肌重塑和功能障碍

阅读:8
作者:Juozas A Zavadzkas, Rebecca A Plyler, Shenikqua Bouges, Christine N Koval, William T Rivers, Christy U Beck, Eileen I Chang, Robert E Stroud, Rupak Mukherjee, Francis G Spinale

Abstract

The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。