Background
Bridging repair has emerged as a promising and reliable treatment strategy for the massive rotator cuff tears (MRCTs). However, there remains a lack of evidence on which bridging graft provides the better repair
Conclusions
This study demonstrated that all three grafts could successfully bridging chronic MRCTs in a rabbit model. However, autologous FL promoted tendon regeneration and maturation, and enhanced the tensile properties of the tendon-to-bone complex when compared with ADM and PET grafts.
Methods
A total of 66 male New Zealand White Rabbits were used to mimic a model of unilateral chronic MRCTs. The rabbits were randomly divided into three groups: (1) FL group, which underwent bridging repair with autologous FL; (2) ADM group, which underwent bridging with ADM; and (3) PET group, which underwent bridging with PET patch. Tissue samples were collected and subjected to histological analysis using Hematoxylin and eosin, Picrosirius red, Safranin O/Fast green staining, and Immunostaining. Collagen diameter and fibril density in the regenerated tendon was analyzed with transmission electron microscopy (TEM). Additionally, biomechanical tests were performed at 6 and 12 weeks after repair.
Results
The regenerated tendon successfully reattached to the footprint in all experimental groups. At 6 weeks after repair, the FL group had a significantly higher Modified Tendon Histological Evaluation (MTHE) score at the regenerated tendon than the PET group (13.2 ± 1.64 vs 9.6 ± 1.95, respectively; P = 0.038). The picrosirius red staining results showed that the FL group had a significantly higher type I collagen content than the ADM and PET groups at 6 weeks, and this difference was sustained with the PET group at 12 weeks (P < 0.05). Immunofluorescence analysis against CD68 indicated that the number of macrophage infiltrates was significantly lower in the FL group than in the ADM and PET groups (P < 0.05). At 12 weeks after repair, the area of Safranin O metachromasia was significant greater in ADM group than that in the PET group (P = 0.01). The FL group showed a significantly larger collagen diameter in the regenerated tendon than the PET group (P < 0.05), as indicated by TEM results. Furthermore, the FL group resulted in a greater failure load (at 6 weeks; 118.40 ± 16.70 N vs 93.75 ± 9.06 N, respectively; P = 0.019) and elastic modulus (at 6 weeks; 12.28 ± 1.94 MPa vs 9.58 ± 0.79 MPa, respectively; P = 0.024; at 12 weeks; 15.02 ± 2.36 MPa vs 11.63 ± 1.20 MPa, respectively; P = 0.032) than the ADM group. Conclusions: This study demonstrated that all three grafts could successfully bridging chronic MRCTs in a rabbit model. However, autologous FL promoted tendon regeneration and maturation, and enhanced the tensile properties of the tendon-to-bone complex when compared with ADM and PET grafts.
