Communication within East Antarctic Soil Bacteria

东南极土壤细菌内的通讯

阅读:3
作者:Sin Yin Wong, James C Charlesworth, Nicole Benaud, Brendan P Burns, Belinda C Ferrari

Abstract

Antarctica, being the coldest, driest, and windiest continent on Earth, represents the most extreme environment in which a living organism can survive. Under constant exposure to harsh environmental threats, terrestrial Antarctica remains home to a great diversity of microorganisms, indicating that the soil bacteria must have adapted a range of survival strategies that require cell-to-cell communication. Survival strategies include secondary metabolite production, biofilm formation, bioluminescence, symbiosis, conjugation, sporulation, and motility, all of which are often regulated by quorum sensing (QS), a type of bacterial communication. Until now, such mechanisms have not been explored in terrestrial Antarctica. In this study, LuxI/LuxR-based quorum sensing (QS) activity was delineated in soil bacterial isolates recovered from Adams Flat, in the Vestfold Hills region of East Antarctica. Interestingly, we identified the production of potential homoserine lactones (HSLs) with chain lengths ranging from medium to long in 19 bacterial species using three biosensors, namely, Agrobacterium tumefaciens NTL4, Chromobacterium violaceum CV026, and Escherichia coli MT102, in conjunction with thin-layer chromatography (TLC). The majority of detectable HSLs were from Gram-positive species not previously known to produce HSLs. This discovery further expands our understanding of the microbial community capable of this type of communication, as well as provides insights into physiological adaptations of microorganisms that allow them to survive in the harsh Antarctic environment.IMPORTANCE Quorum sensing, a type of bacterial communication, is widely known to regulate many processes, including those that confer a survival advantage. However, little is known about communication by bacteria residing within Antarctic soils. Employing a combination of bacterial biosensors, analytical techniques, and genome mining, we found a variety of Antarctic soil bacteria speaking a common language, via LuxI/LuxR-based quorum sensing, thus potentially supporting survival in a mixed microbial community. This study reports potential quorum sensing activity in Antarctic soils and has provided a platform for studying physiological adaptations of microorganisms that allow them to survive in the harsh Antarctic environment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。