Proteomic Analysis of Extracellular Vesicles Derived from MDA-MB-231 Cells in Microgravity

微重力条件下 MDA-MB-231 细胞胞外囊泡的蛋白质组学分析

阅读:6
作者:Yundi Chen, Fei Xue, Andrea Russo, Yuan Wan

Abstract

Patients with triple-negative breast cancer (TNBC) have a relatively poor prognosis and cannot benefit from endocrine and/or targeted therapy. Considerable effort has been devoted toward the elucidation of the molecular mechanisms and potential diagnostic/therapeutic targets. However, it is inefficient and often ineffective to study the biological nuances of TNBC in large-scale clinical trials. In contrast, the investigation of the association between molecular alterations induced through controlled variables and relevant physiochemical characteristics of TNBC cells in laboratory settings is simple, definite, and efficient in exploring the molecular mechanisms. In this study, microgravity was selected as the sole variable of study as it can inhibit cancer cell viability, proliferation, metastasis, and chemoresistance. Identifying the key molecules that shift cancer cells toward a less aggressive phenotype may facilitate future TNBC studies. We focused on extracellular vesicles (EV) derived from TNBC MDA-MB-231 cells in microgravity, which mediate intercellular communication by transporting signaling molecules between cells. Our results show that in comparison with cells in full gravity, EV release rate decreased in microgravity while average EV size increased. In addition, we found EVs may be superior to cells in analyzing differentially expressed proteins, especially those that are down-regulated ones and usually unidentified or neglected in analysis of intact cellular contents. Proteomic analysis of both EVs and cells further revealed a significant correlation with GTPases and proliferation of MDA-MB-231 cells in microgravity. Altogether, our findings would further inspire in-depth correlative cancer biological studies and subsequent clinical research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。