FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease

FoxO1 介导的 STAT1 抑制可减轻糖尿病肾病中的小管间质纤维化和小管细胞凋亡

阅读:6
作者:Fengjuan Huang, Qingzhu Wang, Feng Guo, Yanyan Zhao, Linlin Ji, Tingting An, Yi Song, Yang Liu, Yanyan He, Guijun Qin

Background

Tubulointerstitial fibrosis (TIF) plays an important role in the progression of diabetic kidney disease (DKD). Forkhead box O1 (FoxO1) is involved in the regulation of metabolism and cell apoptosis, but its function in renal TIF induced by DKD is less well understood.

Methods

Human kidney biopsies with DKD and normal controls were used to detect apoptosis and TIF induced by diabetes. A mouse model with kidney-specific overexpression of Pax2-3aFoxO1 was established to further investigate the functions of FoxO1 in vivo. The in vitro roles of FoxO1 were analyzed in HK-2 cells with 3aFoxO1-knockin (3aFoxO1-KI) or FoxO1-knockdown (FoxO1-KD) via CRISPR/Cas9. Western blot, immunohistochemistry, and chromatin immunoprecipitation were used to explore the underlying mechanisms. Findings: In this study, DKD patients had increased renal TIF and apoptosis. In vivo study showed that kidney-specific overexpression of Pax2-3aFoxO1 significantly reduced the expression of p-STAT1 with resultant renal functional impairment, retarding renal TIF and apoptosis in diabetic mice. Meanwhile, We observed that FoxO1-KD in HK-2 cells aggravated the expression of p-STAT1, leading to activation of epithelial-to-mesenchymal transition (EMT) and intrinsic apoptotic pathway. Conversely, EMT and apoptosis were significantly attenuated in HK-2 cells with 3aFoxO1-KI under hyperglycemic conditions. Interpretation: Taken together, these data suggest that the protection role of FoxO1 against renal TIF and apoptosis in DKD is likely in part to target STAT1 signaling, which may be a promising strategy for long-term treatment of DKD. FUND: This work was supported by grants from the National Natural Science Foundation of China (grant numbers: 81570746 and 81770812).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。