Behavioral and Sensory Deficits Associated with Dysfunction of GABAergic System in a Novel shank2-Deficient Zebrafish Model

新型 shank2 缺陷斑马鱼模型中 GABA 能系统功能障碍导致的行为和感觉缺陷

阅读:6
作者:Yi Wang, Chunxue Liu, Jingxin Deng, Qiong Xu, Jia Lin, Huiping Li, Meixin Hu, Chunchun Hu, Qiang Li, Xiu Xu

Abstract

Hyper-reactivity to sensory inputs is a common and debilitating symptom of autism spectrum disorder (ASD), but the underlying neural abnormalities remain unclear. Two of three patients in our clinical cohort screen harboring de novo SHANK2 mutations also exhibited high sensitivity to visual, auditory, and tactile stimuli, so we examined whether shank2 deficiencies contribute to sensory abnormalities and other ASD-like phenotypes by generating a stable shank2b-deficient zebrafish model (shank2b-/-). The adult shank2b-/- zebrafish demonstrated reduced social preference and kin preference as well as enhanced behavioral stereotypy, while larvae exhibited hyper-sensitivity to auditory noise and abnormal hyperactivity during dark-to-light transitions. This model thus recapitulated the core developmental and behavioral phenotypes of many previous genetic ASD models. Expression levels of γ-aminobutyric acid (GABA) receptor subunit mRNAs and proteins were also reduced in shank2b-/- zebrafish, and these animals exhibited greater sensitivity to drug-induced seizures. Our results suggest that GABAergic dysfunction is a major contributor to the sensory hyper-reactivity in ASD, and they underscore the need for interventions that target sensory-processing disruptions during early neural development to prevent disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。