Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease

阿尔茨海默病三重转基因小鼠模型的内侧前额叶皮质中的星形胶质细胞细胞骨架萎缩

阅读:9
作者:Magdalena Kulijewicz-Nawrot, Alexei Verkhratsky, Alexander Chvátal, Eva Syková, José J Rodríguez

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the loss of cognitive functions, reflecting pathological damage to the medial prefrontal cortex (mPFC) as well as to the hippocampus and the entorhinal cortex. Astrocytes maintain the internal homeostasis of the CNS and are fundamentally involved in neuropathological processes, including AD. Here, we analysed the astrocytic cytoskeletal changes within the mPFC of a triple transgenic mouse model of AD (3 × Tg-AD) by measuring the surface area and volume of glial fibrillary acidic protein (GFAP)-positive profiles in relation to the build-up and presence of amyloid-β (Aβ), and compared the results with those found in non-transgenic control animals at different ages. 3 × Tg-AD animals showed clear astroglial cytoskeletal atrophy, which appeared at an early age (3 months; 33% and 47% decrease in GFAP-positive surface area and volume, respectively) and remained throughout the disease progression at 9, 12 and 18 months old (29% and 36%; 37% and 35%; 43% and 37%, respectively). This atrophy was independent of Aβ accumulation, as only a few GFAP-positive cells were localized around Aβ aggregates, which suggests no direct relationship with Aβ toxicity. Thus, our results indicate that the progressive reduction in astrocytic branching and domain in the mPFC can account for the integrative dysfunction leading to the cognitive deficits and memory disturbances observed in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。