Expression profiles of heat shock protein 27 and αB-crystallin and their effects on heat-stressed rat myocardial cells in vitro and in vivo

热休克蛋白27和αB-晶体蛋白的表达谱及其对体内外热应激大鼠心肌细胞的影响

阅读:5
作者:Shu Tang, Hongbo Chen, Yanfen Cheng, Mohammad Abdel Nasir, Nicole Kemper, Endong Bao

Abstract

The present study established a heat-stressed rat heart model, and used an H9c2 myocardial cell line to investigate the expression profiles of heat shock protein (Hsp)27 and αB-crystallin, both in vivo and in vitro. Rats and myocardial cells were subjected to 42 ˚C for 0, 20, 40, 60, 80 or 100 min, following which the mRNA and protein expression levels of Hsp27 and αB-crystallin were measured. Following heat shock, the protein expression levels of Hsp27 and αB-crystallin were significantly decreased in the rat heart cells in vivo, whereas their mRNA levels were significantly increased. The opposing association between the protein and mRNA expression levels of Hsp27 and αB-crystallin suggests that the progression from mRNA into proteins via translation may delayed, or proteins may exist as either oligomers or in the phosphorylated form under heat stress. In vitro, Hsp27 and αB-crystallin exhibited similar reductions in the protein levels at 40 and 60 min, then increased to normal values following 80 min of heat stress. However, the mRNA levels were not consistent with the protein levels. The mRNA levels of Hsp27 and αB-crystallin did however exhibit similar tendencies following 60 min of heat stress. The present study investigated these apparently conflicting results between the in vitro cell line and the in vivo body system. The results demonstrated that the protein and mRNA expression levels of Hsp27 and αB-crystallin exhibited similar trends in vivo and in vitro, respectively. These results were confirmed by analysis with STRING 9.1 software, which indicated that Hsp27 and αB-crystallin are co-expressed in rat myocardial cells. However, the individual cell lines and whole body system exhibited different trends in Hsp27 and αB-crystallin levels prior to and following heat stress, thus require further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。