Trehalase is required for sex pheromone biosynthesis in Helicoverpa armigera

海藻糖酶是棉铃虫性信息素生物合成所必需的

阅读:16
作者:Bo Zhang, Yunhui Zhang, Ruobing Guan, Mengfang Du, Xinming Yin, Wenli Zhao, Shiheng An

Abstract

Trehalase (Treh) hydrolyzes trehalose to generate glucose and it plays important role in many physiological processes. Acetyl-CoA, the precursor of sex pheromone biosynthesis in the pheromone gland (PG) of Helicoverpa armigera, originates from glucose during glycolysis. However, the function of Treh in sex pheromone biosynthesis remains elusive. In the present study, H. armigera was used as a model to investigate the function of two Trehs (Treh1 and Treh2) in sex pheromone biosynthesis. Results demonstrated that knockdown of HaTreh1 or HaTreh2 in female PGs led to significant decreases in Z11-16:Ald production, female ability to attract males, and successful mating proportions. Pheromone biosynthesis activating neuropeptide (PBAN) treatment triggered HaTreh1 and HaTreh2 activities in the isolated PGs and Sf9 cells. However, the activities of HaTreh1 and HaTreh2 triggered by PBAN were offset by H-89, the specific inhibitor of protein kinase A (PKA). Furthermore, the H-89 treatment significantly decreased the phosphorylation level of Trhe2, which was induced by PBAN. In addition, sugar feeding (5% sugar) increased the enzyme activities of Treh1 and Treh2. In summary, our findings confirmed that PBAN activates Treh1/2 activities by recruiting cAMP/PKA signalling, promotes glycolysis to ensure the supply of acetyl-CoA, and ultimately facilitates sex pheromone biosynthesis and mating behaviour.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。