Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy

非甾体盐皮质激素受体拮抗剂 Finerenone 可减少血管损伤并增加调节性 T 细胞:针对患有糖尿病和新生血管性视网膜病变的啮齿动物的研究

阅读:5
作者:Jack R Jerome, Devy Deliyanti, Varaporn Suphapimol, Peter Kolkhof, Jennifer L Wilkinson-Berka

Abstract

Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。