Developing Antagonists for the Met-HGF/SF Protein-Protein Interaction Using a Fragment-Based Approach

使用基于片段的方法开发 Met-HGF/SF 蛋白质-蛋白质相互作用的拮抗剂

阅读:6
作者:Anja Winter, Anna G Sigurdardottir, Danielle DiCara, Giovanni Valenti, Tom L Blundell, Ermanno Gherardi

Abstract

In many cancers, aberrant activation of the Met receptor tyrosine kinase leads to dissociation of cells from the primary tumor, causing metastasis. Accordingly, Met is a high-profile target for the development of cancer therapies, and progress has been made through development of small molecule kinase inhibitors and antibodies. However, both approaches pose significant challenges with respect to either target specificity (kinase inhibitors) or the cost involved in treating large patient cohorts (antibodies). Here, we use a fragment-based approach in order to target the protein-protein interaction (PPI) between the α-chain of hepatocyte growth factor/scatter factor (HGF/SF; the NK1 fragment) and its high-affinity binding site located on the Met Sema domain. Surface plasmon resonance was used for initial fragment library screening and hits were developed into larger compounds using substructure (similarity) searches. We identified compounds able to interfere with NK1 binding to Met, disrupt Met signaling, and inhibit tumorsphere generation and cell migration. Using molecular docking, we concluded that some of these compounds inhibit the PPI directly, whereas others act indirectly. Our results indicate that chemical fragments can efficiently target the HGF/SF-Met interface and may be used as building blocks for generating biologically active lead compounds. This strategy may have broad application for the development of a new class of Met inhibitors, namely receptor antagonists, and in general for the development of small molecule PPI inhibitors of key therapeutic targets when structural information is not available.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。