Topological analysis of DPY19L3, a human C-mannosyltransferase

人类 C-甘露糖基转移酶 DPY19L3 的拓扑分析

阅读:7
作者:Yuki Niwa, Yoshihiko Nakano, Takehiro Suzuki, Mizuo Yamagishi, Kei Otani, Naoshi Dohmae, Siro Simizu

Abstract

C-mannosylation is a rare type of protein glycosylation, the functions and mechanisms of which remain unclear. Recently, we identified DPY19L3 as a C-mannosyltransferase of R-spondin1 in human cells. DPY19L3 is predicted to be a multipass transmembrane protein that localizes to the endoplasmic reticulum (ER); however, its structure is undetermined. In this study, we propose a topological structure of DPY19L3 by in silico analysis and experimental methods such as redox-sensitive luciferase assay and introduction of N-glycosylation sites, suggesting that DPY19L3 comprises 11 transmembrane regions and two re-entrant loops with the N- and C-terminal ends facing the cytoplasm and ER lumen, respectively. Furthermore, DPY19L3 has four predicted N-glycosylation sites, and we have demonstrated that DPY19L3 is N-glycosylated at Asn118 and Asn704 but not Asn319 and Asn439 , supporting our topological model. By mass spectrometry, we measured the C-mannosyltransferase activity of N-glycosylation-defective mutants of DPY19L3 and isoform2, a splice variant, which lacks the C-terminal luminal region of DPY19L3. Isoform2 does not possess C-mannosyltransferase activity, indicating the importance of the C-terminal region; however, N-glycosylations of DPY19L3 do not have any roles for its enzymatic activity. These novel findings on DPY19L3 provide important insights into the mechanism of C-mannosylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。