Human bocavirus NP1 inhibits IFN-β production by blocking association of IFN regulatory factor 3 with IFNB promoter

人类博卡病毒 NP1 通过阻断 IFN 调节因子 3 与 IFNB 启动子的结合来抑制 IFN-β 的产生

阅读:6
作者:Zhenfeng Zhang, Zhenhua Zheng, Huanle Luo, Jin Meng, Hongxia Li, Qian Li, Xiaowei Zhang, Xianliang Ke, Bingke Bai, Panyong Mao, Qinxue Hu, Hanzhong Wang

Abstract

Human bocavirus (HBoV) mainly infects young children. Although many infected children suffer from respiratory or gastroenteric tract diseases, an association between HBoV and these diseases is not definite. Because modulation of type I IFN is crucial for viruses to establish efficient replication, in this study, we tested whether HBoV modulates type I IFN production. We observed that a nearly full-length HBoV clone significantly reduced both Sendai virus (SeV)- and poly(deoxyadenylic-thymidylic) acid-induced IFN-β production. Further study showed that NP1 blocked IFN-β activation in response to SeV, poly(deoxyadenylic-thymidylic) acid, and IFN-β pathway inducers, including retinoic acid-inducible protein I, mitochondrial antiviral signaling protein, inhibitor of κB kinase ε, and TANK-binding kinase 1. In addition, NP1 interfered with IRF-3-responsive PRD(III-I) promoter activated by SeV and a constitutively active mutant of IRF-3 (IRF-3/5D). Although NP1 suppressed the IRF-3 pathway, it did not affect IRF-3 activation processes, including phosphorylation, dimerization, and nuclear translocation. Coimmunoprecipitation assays confirmed the interaction between NP1 and IRF-3. Additional deletion mutagenesis and coimmunoprecipitation assays revealed that NP1 bound to the DNA-binding domain of IRF-3, resulting in the interruption of an association between IRF-3 and IFNB promoter. Altogether, our results indicate that HBoV NP1 blocks IFN production through a unique mechanism. To our knowledge, this is the first study to investigate the modulation of innate immunity by HBoV. Our findings suggest a potential immune-evasion mechanism used by HBoV and provide a basis for better understanding HBoV pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。