Sevoflurane preconditioning attenuates hypoxia/reoxygenation injury of H9c2 cardiomyocytes by activation of the HIF-1/PDK-1 pathway

七氟醚预处理通过激活 HIF-1/PDK-1 通路减轻 H9c2 心肌细胞的缺氧/复氧损伤。

阅读:2
作者:Tianliang Hou # ,Haiping Ma # ,Haixia Wang ,Chunling Chen ,Jianrong Ye ,Ahmed Mohamed Ahmed ,Hong Zheng

Abstract

Background: Sevoflurane preconditioning (SPC) can provide myocardial protective effects similar to ischemic preconditioning (IPC). However, the underlying molecular mechanism of SPC remains unclear. Studies confirm that hypoxia-inducible factor-1 (HIF-1) can transform cells from aerobic oxidation to anaerobic glycolysis by activating the switch protein pyruvate dehydrogenase kinase-1 (PDK-1), thus providing energy for the normal life activities of cells under hypoxic conditions. The purpose of this study was to investigate whether the cardioprotective effects of SPC are associated with activation of the HIF-1a/PDK-1 signal pathway. Methods: The H9c2 cardiomyocytes hypoxia/reoxygenation model was established and treated with 2.4% sevoflurane at the end of equilibration. Lactate dehydrogenase (LDH) level, cell viability, cell apoptosis, mitochondrial membrane potential, key enzymes of glycolysis, ATP concentration of glycolysis were assessed after the intervention. Apoptosis related protein(Bcl-2, Bax), HIF-1a protein, and PDK-1 protein were assessed by western blot. Results: Compared with the H/R group, SPC significantly increased the expression of HIF-1a, PDK-1, and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the apoptosis ratio and Lactate dehydrogenase (LDH) level, increasing the cell viability, content of key enzymes of glycolysis, ATP concentration of glycolysis and stabilizing the mitochondrial membrane potential. However, the cardioprotective effects of SPC were disappeared by treatment with a HIF-1a selective inhibitor. Conclusion: This study demonstrates that the cardioprotective effects of SPC are associated with the activation of the HIF-1a/PDK-1 signaling pathway. The mechanism may be related to increasing the content of key enzymes and ATP of glycolysis in the early stage of hypoxia. Keywords: Glycolysis; Hypoxia-inducible factor-1; Hypoxia/reoxygenation injury; Myocardial protective effect; Pyruvate dehydrogenase kinase-1; Sevoflurane preconditioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。