Parametric estimation of reference signal intensity in the quantification of amyloid-beta deposition: an 18F-AV-45 study

淀粉样β蛋白沉积量化中参考信号强度的参数估计:18F-AV-45 研究

阅读:7
作者:Min Wang, Zhuangzhi Yan, Huiwei Zhang, Jiaying Lu, Ling Li, Jintai Yu, Jian Wang, Hiroshi Matsuda, Chuantao Zuo, Jiehui Jiang; Alzheimer’s Disease Neuroimaging Initiative

Background

Positron emission tomography (PET) with the radiotracer florbetapir (18F-AV-45) allows the pathophysiology of Alzheimer's disease (AD) to be tracked in vivo. The semi-quantification of amyloid-beta (Aβ) has been extensively evaluated with the standardized uptake value ratio (SUVR) but is susceptible to disturbance from the candidate reference region and the partial volume effect (PVE). In the present study, we applied the parametric estimation of reference signal intensity (PERSI) method to 18F-AV-45 PET images for intensity normalization.

Conclusions

PERSI-WM could mitigate the influence of PVE and improve the semi-quantification of 18F-AV-45 images; therefore, it could be used for large-scale clinical application in the nuclear medicine domain.

Methods

We enrolled 479 people with 18F-AV-45 images from the Alzheimer's Disease Neuroimaging Initiative database: 261 healthy controls (HCs), 102 patients with mild cognitive impairment (MCI), and 116 AD patients. We used white matter post-processed by PERSI (PERSI-WM) as the reference region and compared our proposed method with the traditional method for semi-quantification. SUVRs were calculated for eight regions of interest: the frontal lobe, the parietal lobe, the temporal lobe, the occipital lobe, the anterior cingulate cortex, the posterior cingulate cortex, the precuneus, and the global cortex. The SUVRs derived from PERSI-WM and other reference regions were evaluated by effect size and receiver-operator characteristic curve analyses.

Results

The SUVRs derived from PERSI-WM showed significantly higher trace retention in the frontal, parietal, temporal, and occipital lobes, as well as in the anterior cingulate, posterior cingulate, precuneus, and global cortex in the AD Aβ-positive (+) group (mean: +43.3%±5.4%, P<0.01) and MCI Aβ+ group (mean: +29.6%±5.3%, P<0.01). For the global cortex, PERSI-WM had the greatest Cohen's d effect size compared with the HC Aβ-negative (-) group (AD Aβ+ and MCI Aβ+: 3.02, AD Aβ+: 3.56, MCI Aβ+: 2.34), and the highest area under the curve (AUC) between the HC Aβ- and AD Aβ+ groups (AUC: 0.983, 95% confidence interval: 0.978-0.998). Conclusions: PERSI-WM could mitigate the influence of PVE and improve the semi-quantification of 18F-AV-45 images; therefore, it could be used for large-scale clinical application in the nuclear medicine domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。