Regulatory Mechanism between Ferritin and Mitochondrial Reactive Oxygen Species in Spinal Ligament-Derived Cells from Ossification of Posterior Longitudinal Ligament Patient

后纵韧带骨化症患者脊柱韧带衍生细胞中铁蛋白与线粒体活性氧之间的调控机制

阅读:5
作者:Jong Tae Kim, Yonggoo Kim, Ji Yeon Kim, Seungok Lee, Myungshin Kim, Dong Wook Jekarl

Abstract

Primary spinal ligament-derived cells (SLDCs) from cervical herniated nucleus pulposus tissue (control, Ctrl) and ossification of the posterior longitudinal ligament (OPLL) tissue of surgical patients were analyzed for pathogenesis elucidation. Here, we found that decreased levels of ferritin and increased levels of alkaline phosphatase (ALP), a bone formation marker, provoked osteogenesis in SLDCs in OPLL. SLDCs from the Ctrl and OPLL groups satisfied the definition of mesenchymal stem/stromal cells. RNA sequencing revealed that oxidative phosphorylation and the citric acid cycle pathway were upregulated in the OPLL group. SLDCs in the OPLL group showed increased mitochondrial mass, increased mitochondrial reactive oxygen species (ROS) production, decreased levels of ROS scavengers including ferritin. ROS and ferritin levels were upregulated and downregulated in a time-dependent manner, and both types of molecules repressed ALP. Osteogenesis was mitigated by apoferritin addition. We propose that enhancing ferritin levels might alleviate osteogenesis in OPLL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。