Activation of SARS-CoV-2 by trypsin-like proteases in the clinical specimens of patients with COVID-19

COVID-19 患者临床标本中胰蛋白酶样蛋白酶对 SARS-CoV-2 的激活

阅读:6
作者:Emiko Yamazaki, Shunsuke Yazawa, Takahisa Shimada, Kosuke Tamura, Yumiko Saga, Masae Itamochi, Noriko Inasaki, Sumiyo Hasegawa, Yoshitomo Morinaga, Kazunori Oishi, Hideki Tani

Abstract

SARS-CoV-2 enters host cells through the angiotensin converting enzyme 2 (ACE2) receptor and/or transmembrane protease, serine 2 (TMPRSS2). In this study, we investigated whether proteases increased SARS-CoV-2 infectivity using pseudotyped viruses and clinical specimens from patients with COVID-19. First, we investigated how trypsin increased infectivity using the pseudotyped virus. Our findings revealed that trypsin increased infectivity after the virus was adsorbed on the cells, but no increase in infectivity was observed when the virus was treated with trypsin. We examined the effect of trypsin on SARS-CoV-2 infection in clinical specimens and found that the infectivity of the SARS-CoV-2 delta variant increased 36,000-fold after trypsin treatment. By contrast, the infectivity of SARS-CoV-2 omicron variant increased to less than 20-fold in the clinical specimens. Finally, using five clinical specimens containing delta variants, enhancement of viral infectivity was evaluated in the presence of the culture supernatant of several anaerobic bacteria. As a result, viral infectivities of all the clinical specimens containing culture supernatants of Fusobacterium necrophorum were significantly increased from several- to tenfold. Because SARS-CoV-2 infectivity increases in the oral cavity, which may contain anaerobic bacteria, keeping the oral cavities clean may help prevent SARS-CoV-2 infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。