Microneedle-mediated Intratumoral Delivery of Anti-CTLA-4 Promotes cDC1-dependent Eradication of Oral Squamous Cell Carcinoma with Limited irAEs

微针介导的抗 CTLA-4 肿瘤内递送促进 cDC1 依赖性口腔鳞状细胞癌根除,且 irAE 有限

阅读:4
作者:Mara Gilardi, Robert Saddawi-Konefka, Victoria H Wu, Miguel Angel Lopez-Ramirez, Zhiyong Wang, Fernando Soto, Dana J Ramms, Marco Proietto, Zbigniew Mikulski, Haruka Miki, Andrew Sharabi, Daniel Kupor, Ricardo Rueda, Daniel P Hollern, Joseph Wang, J Silvio Gutkind

Abstract

Head and neck squamous cell carcinoma (HNSCC) ranks sixth in cancer incidence worldwide and has a 5-year survival rate of only 63%. Immunotherapies-principally immune checkpoint inhibitors (ICI), such as anti-PD-1 and anti-CTLA-4 antibodies that restore endogenous antitumor T-cell immunity-offer the greatest promise for HNSCC treatment. Anti-PD-1 has been recently approved for first-line treatment of recurrent and metastatic HNSCC; however, less than 20% of patients show clinical benefit and durable responses. In addition, the clinical application of ICI has been limited by immune-related adverse events (irAE) consequent to compromised peripheral immune tolerance. Although irAEs are often reversible, they can become severe, prompting premature therapy termination or becoming life threatening. To address the irAEs inherent to systemic ICI therapy, we developed a novel, local delivery strategy based upon an array of soluble microneedles (MN). Using our recently reported syngeneic, tobacco-signature murine HNSCC model, we found that both systemic and local-MN anti-CTLA-4 therapy lead to >90% tumor response, which is dependent on CD8 T cells and conventional dendritic cell type 1 (cDC1). However, local-MN delivery limited the distribution of anti-CTLA-4 antibody from areas distal to draining lymphatic basins. Employing Foxp3-GFPDTR transgenic mice to interrogate irAEs in vivo, we found that local-MN delivery of anti-CTLA-4 protects animals from irAEs observed with systemic therapy. Taken together, our findings support the exploration of MN-intratumoral ICI delivery as a viable strategy for HNSCC treatment with reduced irAEs, and the opportunity to target cDC1s as part of multimodal treatment options to boost ICI therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。