Tolypothrix Dichloromethane Ethylacetate fraction (TDEF) inhibits cisplatin resistance H357 cell through PI3K/AKT/beta-catenin pathway

Tolypothrix二氯甲烷乙酸乙酯组分(TDEF)通过PI3K/AKT/beta-catenin通路抑制顺铂耐药H357细胞

阅读:4
作者:Rameshwari Heisnam, Soibam Thoithoisana Devi, Sibasish Mohanty, Pulok K Mukherjee, Vvs Prasanna Kumari Rayala, Pullapanthula Radhakrishnanand, Rupesh Dash, Nanaocha Sharma

Abstract

Chemoresistance is one of the major factors for treatment failure in OSCC. Reprogramming chemoresistance cells to undergo drug induced apoptotic cell death is a feasible approach to overcome drug resistance. Cyanobacteria is considered important sources of lead compounds for the development of drugs for treating cancer chemoresistance. This study deals with the role of Tolypothrix Dichloromethane Ethyl acetate fraction (TDEF) inducing apoptosis in cisplatin resistance H357 cell (H357cisR) and the underlying mechanisms sensitizing the chemoresistance. TDEF showing effective activity against H357cisR with IC50-14.13±1.18 µg mL-1, inhibits proliferation and migration. Proteome apoptosis arrays were found to stimulate phosphorylation of p53, activation of proapoptotic proteins including BAX and cytochrome C (CYCS), caspase-3/9 (CASP3/9), suppression of anti-apoptotic proteins like Bcl2, survivin and increased expression of the cell cycle checkpoint protein p21, p27. TDEF induced apoptosis with cell death-transducing signals, that regulate the Matrix metalloproteinases (MMPs) by down-regulation of Bcl2 and up-regulation of Bax, triggering the cytochrome c release from mitochondria to cytosol thus triggered the activation of caspases-9 to activate downstream executioner caspase-3/7 required for apoptotic changes. The mechanistic pathway of apoptotic cell death in H357cisR was done through inhibiting β-catenin through GSK3β in turn activated by AKT. The phosphorylated β-catenin leads to proteasome degradation and unable to translocation to nucleus thereby activating c-Myc, survivin, Cyclin D and upregulate p21 expression which lead to cell cycle arrest in G0/G1 phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。