Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors

使用等离子体光纤传感器对水性电池中的离子活性进行原位监测

阅读:4
作者:Runlin Wang #, Haozhe Zhang #, Qiyu Liu #, Fu Liu #, Xile Han, Xiaoqing Liu, Kaiwei Li, Gaozhi Xiao, Jacques Albert, Xihong Lu, Tuan Guo

Abstract

Understanding ion transport kinetics and electrolyte-electrode interactions at electrode surfaces of batteries in operation is essential to determine their performance and state of health. However, it remains a challenging task to capture in real time the details of surface-localized and rapid ion transport at the microscale. To address this, a promising approach based on an optical fiber plasmonic sensor capable of being inserted near the electrode surface of a working battery to monitor its electrochemical kinetics without disturbing its operation is demonstrated using aqueous Zn-ion batteries as an example. The miniature and chemically inert sensor detects perturbations of surface plasmon waves propagating on its surface to rapidly screen localized electrochemical events on a sub-μm-scale thickness adjacent to the electrode interface. A stable and reproducible correlation between the real-time ion insertions over charge-discharge cycles and the optical plasmon response has been observed and quantified. This new operando measurement tool will provide crucial additional capabilities to battery monitoring methods and help guide the design of better batteries with improved electro-chemistries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。