Long noncoding RNA MEG3 deteriorates inflammatory damage by downregulating microRNA-101a

长链非编码 RNA MEG3 通过下调 microRNA-101a 加剧炎症损伤

阅读:4
作者:Shouyi Tang, Junxia Han, Hui Jiao, Jingna Si, Yingying Liu, Jinlong Wang

Abstract

Valvulopathy is a familiar heart disease, which fearfully harms the health of the body. We studied the effects and mechanism of long noncoding RNA maternally expressed gene 3 (lncMEG3) on MVICs cell in inflammatory damage. Cell Counting Kit-8 and flow cytometry were respectively used to detect the effect of tumor necrosis factor α (TNF-α), MEG3 and microRNA (miR)-101a on cell viability and apoptosis. Moreover, MEG3 and miR-101a expression were changed by cell transfection and investigated by reverse transcription-quantitative polymerase chain reaction. Furthermore, Western blot was used to investigate the levels of Bax, pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, interleukin (IL)-1β, IL-6 and related-proteins of cell pathways. Otherwise, the levels of IL-1β and IL-6 were also investigated by enzyme-linked immunosorbent assay kit. Reactive oxygen species (ROS) was examined by ROS assay. We found TNF-α caused inflammatory damage and upregulated MEG3. MEG3 was overexpressed and silenced in cells. Besides, MEG3 deteriorated inflammatory damage. Furthermore, MEG3 negatively regulated miR-101a and miR-101a mimic could reverse the effect of pc-MEG3. Besides, MEG3 enhanced the JNK and NF-κB pathways by downregulating miR-101a. In conclusion, MEG3 deteriorated cell inflammatory damage by downregulating miR-101a via JNK and NF-κB pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。