Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway

适度跑步机运动通过 AMPK/CDX2 信号通路调节高脂饮食诱导的肥胖小鼠的肠道菌群并改善肠道屏障

阅读:7
作者:Jing Wang #, Qiang Zhang #, Jie Xia, Haiji Sun

Conclusion

Long-term moderate treadmill exercise can markedly reduce the degree of obesity, modulate the colonic gut microbiota, and effectively activating AMPK/CDX2 signaling pathway to improve intestinal barrier in obese mice induced by high-fat diet.

Methods

Six-week-old male C57BL/6 mice were randomly divided into standard chow diet control group (SD + Sed, n=6), chow diet exercise group (SD + Exe, n=6), high-fat diet control group (HFD + Sed, n=6) and high-fat diet exercise group (HFD + Exe, n=6). Exercise groups were trained on a motorized treadmill for 45 min/d at running speeds of 12 m/min, 5 days/week, for 12 consecutive weeks. The body weight and fasting blood glucose of the mice were recorded before euthanasia. Thereafter, the mice were sacrificed and the alteration of adipose mass, colonic histopathology, gut microbiome and gut barrier-related molecules were tested.

Objective

The aim of this study was to investigate the effects of moderate treadmill exercise on gut microbiota, expression of proteins associated with gut barrier and to elucidate the mechanisms underlying their role in high-fat-diet-induced obese mice.

Results

It was found that the moderate treadmill exercise prevented the development of adiposity and hyperglycemia and effectively improved the loss of diversity and the relative abundance of intestinal microflora induced by high-fat diet. Moreover, regular exercise reversed the intestinal pathology and elevated the number of goblet cells in obesity. Besides, compared with the sedentary obese mice, the protein expression levels of colonic ZO-1 and occludin were enhanced and AMPK/CDX2 signaling pathway was significantly upregulated in obese mice that underwent exercise.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。