Stichoposide C Exerts Anticancer Effects on Ovarian Cancer by Inducing Autophagy via Inhibiting AKT/mTOR Pathway

西洋参苷 C 通过抑制 AKT/mTOR 通路诱导自噬,对卵巢癌发挥抗癌作用

阅读:7
作者:Fangfang Liu #, Lumin Tang #, Mengyu Tao #, Chuang Cui, Di He, Longxia Li, Yahui Liao, Yamin Gao, Jing He, Fan Sun, Houwen Lin, He Li

Conclusion

Stichoposide C exerts in vitro and in vivo anticancer effects on ovarian cancer by inducing autophagy via inhibiting AKT/mTOR pathway. The findings warrant further prove for STC as a potential therapeutic agent for ovarian cancer.

Methods

CCK-8 and colony formation assays were used to detect cell viability and proliferation. Flow cytometry was used to detect apoptosis and cell cycle arrest. Protein expression and phosphorylation were measured by Western blotting analysis. Confocal fluorescence microscopy was used to observe the autophagy flux. Autophagosome formation was observed via transmission electron microscopy. Antitumor effect of STC was investigated in patient-derived organoids (PDOs) and A2780 subcutaneous xenograft tumors.

Purpose

Stichoposide C (STC) is a triterpene glycoside isolated from Thelenota ananas, which is previously demonstrated to wide spectrum of anticancer effects against various tumor cells. However, the antitumor effects and underlying molecular mechanisms in ovarian cancer (OC) cells are not fully understood. Here, we examined if and through which mechanisms STC exerts anticancer effects on OC.

Results

STC was found that not only exerted antiproliferation activity and apoptosis but also induced autophagy. Mechanistically, STC induced autophagy via inhibited the AKT/mTOR signaling pathway in ovarian cancer cells. In addition, STC and an autophagy inhibitor 3-methyladenine (3-MA) combination treatment showed significant synergetic effects on inhibiting proliferation and promoting apoptosis in vitro. Consistent with cell experiments, STC also inhibited the growth of two OC PDOs. Finally, STC markedly reduced the growth of A2780 subcutaneous xenograft tumors without organ toxicity and activated autophagy in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。