Targeted Metabolic Profiling of Methionine Cycle Metabolites and Redox Thiol Pools in Mammalian Plasma, Cells and Urine

哺乳动物血浆、细胞和尿液中蛋氨酸循环代谢物和氧化还原硫醇池的靶向代谢分析

阅读:5
作者:Sidney Behringer, Victoria Wingert, Victor Oria, Anke Schumann, Sarah Grünert, Artur Cieslar-Pobuda, Stefan Kölker, Ann-Kathrin Lederer, Donald W Jacobsen, Judith Staerk, Oliver Schilling, Ute Spiekerkoetter, Luciana Hannibal

Abstract

The concentration of thiol and thioether metabolites in plasma has diagnostic value in genetic diseases of B-vitamin metabolism linked to methionine utilization. Among these, cysteine/cystine (Cys/CSSC) and glutathione/oxidized glutathione (GSH/GSSG) act as cellular redox buffers. A new LC-MS/MS method was developed for the simultaneous detection of cystathionine (Cysta), methionine (Met), methionine sulfoxide (MSO), creatinine and the reduced and oxidized pairs of homocysteine (Hcy/HSSH), cysteine (Cys/CSSC) and glutathione (GSH/GSSG). A one-step thiol-blocking protocol with minimal sample preparation was established to determine redox thiol pairs in plasma and cells. The concentrations of diagnostic biomarkers Hcy, Met, Cysta, and Cys in a cohort of healthy adults (n = 53) agreed with reference ranges and published values. Metabolite concentrations were also validated in commercial samples of human, mouse, rat and Beagle dog plasma and by the use of a standardized ERNDIM quality control. Analysis of fibroblasts, endothelial and epithelial cells, human embryonic stem cells, and cancer cell lines showed cell specificity for both the speciation and concentration of thiol and thioether metabolites. This LC-MS/MS platform permits the fast and simultaneous quantification of 10 thiol and thioether metabolites and creatinine using 40 µL plasma, urine or culture medium, or 500,000 cells. The sample preparation protocols are directly transferable to automated metabolomic platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。