Delayed gastric emptying and altered antrum protein metabolism during activity-based anorexia

活动性厌食症期间胃排空延迟和胃窦蛋白质代谢改变

阅读:9
作者:S Nobis, A Morin, N Achamrah, L Belmonte, R Legrand, P Chan, J-L do Rego, D Vaudry, G Gourcerol, P Déchelotte, A Goichon, M Coëffier

Background

Anorexia nervosa, a restrictive eating disorder, is often associated with gastrointestinal disorders, particularly a delayed gastric emptying. However, the mechanisms remained poorly documented. Thus, we aimed to evaluate gastric emptying and antrum protein metabolism in the Activity-Based Anorexia model (ABA).

Methods

Females C57Bl/6 mice were randomized into 3 groups: Control, ABA, and Limited Food Access (LFA). Food access has been progressively limited from 6 h/day at day 6 to 3 h/day at day 9 and until day 17. ABA mice had free access to an activity wheel. Gastric emptying was assessed. On gastric extracts, a proteomic analysis was performed, as well as an evaluation of protein synthesis and protein oxidation. Key

Results

Both LFA and ABA mice exhibited a delayed gastric emptying compared with Controls (P < .05). Proteomic approach revealed 15 proteins that were differentially expressed. Among these proteins, we identified 2 clusters of interest contributing to (i) the organization of muscle fiber with ACTA2, VCL, KRT19, KRT8, and DES proteins and (ii) "heat shock proteins" with STIP1, HSPD1, and HSPA8 proteins. ABA mice specifically exhibited an increased rate of gastric oxidized proteins. Conclusions and inferences: Delayed gastric emptying observed in anorectic conditions appears to be secondary to malnutrition. However, an oxidative stress is specifically present in the stomach of ABA mice. Its role remains to be further studied.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。