Adenovirus-engineered human dendritic cells induce natural killer cell chemotaxis via CXCL8/IL-8 and CXCL10/IP-10

腺病毒工程化人类树突状细胞通过 CXCL8/IL-8 和 CXCL10/IP-10 诱导自然杀伤细胞趋化性

阅读:5
作者:Lazar Vujanovic, Wenners Ballard, Stephen H Thorne, Nikola L Vujanovic, Lisa H Butterfield

Abstract

Recombinant adenovirus-engineered dendritic cells (Ad.DC) are potent vaccines for induction of anti-viral and anti-cancer T cell immunity. The effectiveness of Ad.DC vaccines may depend on the newly described ability of Ad.DC to crosstalk with natural killer (NK) cells via cell-to-cell contact, and to mediate activation, polarization and bridging of innate and adaptive immunity. For this interaction to occur in vivo, Ad.DC must be able to attract NK cells from surrounding tissues or peripheral blood. We developed a novel live mouse imaging system-based NK-cell migration test, and demonstrated for the first time that human Ad.DC induced directional migration of human NK cells across subcutaneous tissues, indicating that Ad.DC-NK cell contact and interaction could occur in vivo. We examined the mechanism of Ad.DC-induced migration of NK cells in vitro and in vivo. Ad.DC produced multiple chemokines previously reported to recruit NK cells, including immunoregulatory CXCL10/IP-10 and proinflammatory CXCL8/IL-8. In vitro chemotaxis experiments utilizing neutralizing antibodies and recombinant human chemokines showed that CXCL10/IP-10 and CXCL8/IL-8 were critical for Ad.DC-mediated recruitment of CD56(hi)CD16(-) and CD56(lo)CD16(+) NK cells, respectively. The importance of CXCL8/IL-8 was further demonstrated in vivo. Pretreatment of mice with the neutralizing anti-CXCL8/IL-8 antibody led to significant inhibition of Ad.DC-induced migration of NK cells in vivo. These data show that Ad.DC can recruit spatially distant NK cells toward a vaccine site via specific chemokines. Therefore, an Ad.DC vaccine can likely induce interaction with endogenous NK cells via transmembrane mediators, and consequently mediate Th1 polarization and amplification of immune functions in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。