T cell-depleted cultured pediatric thymus tissue as a model for some aspects of human age-related thymus involution

细胞耗竭的培养儿童胸腺组织可作为人类年龄相关性胸腺退化的某些方面的模型

阅读:12
作者:Laura P Hale, Lynn Cheatham, Andrew N Macintyre, Bonnie LaFleur, Brittany Sanders, Jesse Troy, Joanne Kurtzberg, Gregory D Sempowski

Abstract

Human age-related thymus involution is characterized by loss of developing thymocytes and the thymic epithelial network that supports them, with replacement by adipose tissue. The mechanisms that drive these changes are difficult to study in vivo due to constant trafficking to and from the thymus. We hypothesized that the loss of thymocytes that occurs during human thymic organ cultures could model some aspects of thymus involution and begin to identify mechanisms that drive age-related changes in the thymic microenvironment. Potential mechanistically important candidate molecules were initially identified by screening conditioned media from human thymus organ cultures using antibody microarrays. These candidates were further validated using cultured tissue extracts and conditioned media. Results were compared with gene expression studies from a panel of well-characterized (non-cultured) human thymus tissues from human donors aged 5 days to 78 years. L-selectin released into conditioned media was identified as a biomarker for the content of viable thymocytes within the cultured thymus. Levels of the chemokines CCL21 and CXCL12, likely produced by surviving thymic epithelial cells, increased markedly in conditioned media as thymocytes were lost during culture. Native non-cultured thymus from adults older than 18 years also showed a strong trend toward increased CCL21 expression, in conjunction with significant decreases in thymocyte-related mRNAs compared with thymus from subjects younger than 18 years. Together, these findings demonstrate that use of postnatal human thymus organ cultures can model some aspects of human age-related thymic involution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。