HDAC3 Controls Liver Homeostasis More by Facilitating Deoxyribonucleic Acid Damage Repair than by Regulating Transcription in Hepatocytes

HDAC3 通过促进脱氧核糖核酸损伤修复而非调节肝细胞中的转录来控制肝脏稳态

阅读:6
作者:Qing Tao, Hongjie Ji, Yongjie Zhou, Yuke Shu, Yuwei Chen, Mingyang Shao, Zhenru Wu, Menglin Chen, Tao Lv, Yujun Shi

Abstract

By controlling DNA damage repair and regulating gene transcription, the critical epigenetic regulator histone deacetylase 3 (HDAC3) plays pivotal roles in liver cancer and liver regeneration; however, the role of HDAC3 in liver homeostasis has not been fully elucidated. In this study, we found that HDAC3-deficient livers developed a defective morphology and metabolism with an increasing degree of DNA damage in the hepatocytes along the portal-central axis of the lobule. Most strikingly, in the Alb-CreERT:Hdac3-/- mice, it was demonstrated that HDAC3 ablation did not impair liver homeostasis in terms of histologic characteristics, function, proliferation, or gene profiles prior to the profound accumulation of DNA damage. Next, we identified that the hepatocytes in the portal area, which carried less DNA damage than those in the central area, repopulated the hepatic lobule by active regeneration and movement toward the center. As a result, the liver became more viable after each surgery. Furthermore, in vivo tracing of keratin-19-expressing hepatic progenitor cells, which lacked HDAC3, showed that the hepatic progenitor cells gave rise to newly generated periportal hepatocytes. In hepatocellular carcinoma, HDAC3 deficiency impaired DNA damage response and enhanced radiotherapy sensitivity in vitro and in vivo. Taken together, we demonstrated that HDAC3 deficiency interferes with liver homeostasis, which is more dependent on the accumulation of DNA damage in hepatocytes than on transcriptional dysregulation. Our findings support the hypothesis that selective HDAC3 inhibition has the potential to augment the effect of chemoradiotherapy aimed at inducing DNA damage in cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。