Interleukin-1 increases cyclooxygenase-2 expression and prostaglandin E2 production in human granulosa-lutein cell via nuclear factor kappa B/P65 and extracellular signal-regulated kinase 1/2 signaling pathways

白细胞介素-1通过核因子κB / P65和细胞外信号调节激酶1 / 2信号通路增加人颗粒叶黄素细胞中环氧合酶-2的表达和前列腺素E2的产生

阅读:6
作者:Shan Wan, Qingqing Chen, Yu Xiang, Yimiao Sang, Minyue Tang, Yang Song, Guofang Feng, Bingru Ye, Long Bai, Yimin Zhu

Abstract

A multitude of cytokines have been reported to participate in the folliculogenesis process in female. Interleukin-1 (IL-1), belonging to interleukin family, is originally identified as an important immune factor involved in inflammation response. Besides the immunity system, IL-1 is also expressed in reproductive system. However, the role of IL-1 in regulating ovarian follicle function remains to be elucidated. In the current study, using the primary human granulosa-lutein (hGL) and immortalized human granulosa-like tumor cell line (KGN) models, we demonstrated that both IL-1α and IL-1β increased prostaglandin E2 (PGE2) production via upregulating its cyclooxygenase (COX) enzyme COX-2 expression in human granulosa cells. Mechanistically, IL-1α and IL-1β treatment activated nuclear factor kappa B (NF-κB) signaling pathway. Using the specific siRNA to knock down endogenous gene expression, we found that the inhibition of p65 expression abolished IL-1α and IL-1β-induced upregulation of COX-2 expression whereas knockdown of p50 and p52 had no effect. Moreover, our results also showed that IL-1α and IL-1β promoted the nuclear translocation of p65. ChIP assay demonstrated the transcriptional regulation of p65 on COX-2 expression. Additionally, we also found that IL-1α and IL-1β could activate the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The inhibition of ERK1/2 signaling pathway activation reversed IL-1α and IL-1β-induced upregulation of COX-2 expression. Our findings shed light on the cellular and molecular mechanisms by which IL-1 modulates the COX-2 expression through NF-κB/P65 and ERK1/2 signaling pathways in human granulosa cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。