Changes of Damage Associated Molecular Patterns in COVID-19 Patients

COVID-19 患者损伤相关分子模式的变化

阅读:8
作者:Xing Fan, Jin-Wen Song, Si-Yu Wang, Wen-Jing Cao, Xiu-Wen Wang, Ming-Ju Zhou, Tao Yang, Chun-Bao Zhou, Jun Hou, Ji-Yuan Zhang, Fan-Ping Meng, Ming Shi, Fu-Sheng Wang, Chao Zhang

Background

The development of severe coronavirus disease 2019 (COVID-19) is associated with systemic hyperinflammation, which drives multi-organ failure and death. Disease deterioration tends to occur when the virus is receding; however, whether other factors besides viral products are involved in the inflammatory cascade remains unclear.

Conclusions

These findings suggest SP-A may involve in the inflammation of COVID-19, while CIRBP likely plays a protective role. Therefore, DAMPs represent a potential target in the prevention or treatment of COVID-19.

Methods

Twenty-eight COVID-19 patients with laboratory-confirmed SARS-CoV-2 infection hospitalized at the Fifth Medical Center of Chinese PLA General Hospital from January 23 to February 20, 2020 and nine healthy donors during the same period were recruited in the study. COVID-19 patients were grouped as mild, moderate, severe based on disease severity. Plasma damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), calprotectin (S100A8/A9), surfactant protein A (SP-A), cold-inducible RNA-binding protein (CIRBP), and Histone H4 were detected by ELISA assay, and analyzed in combination with clinical data. Plasma cytokines, chemokines and lymphocytes were determined by flow cytometry.

Results

Plasma levels of HMGB1 (38292.3 ± 4564.4 vs. 32686.3 ± 3678.1, P = 0.002), S100A8/A9 (1490.8 ± 819.3 vs. 742.2 ± 300.8, P = 0.015), and SP-A (6713.6 ± 1708.7 vs. 5296.3 ± 1240.4, P = 0.048) were increased in COVID-19 patients compared to healthy donors, while CIRBP (57.4 ± 30.7 vs. 111.9 ± 55.2, P = 0.004) levels decreased. Five DAMPs did not vary among mild, moderate, and severe patients. Moreover, SP-A levels correlated positively with inflammatory cytokines and negatively with time elapsed after symptom onset, whereas CIRBP showed an opposite pattern. Conclusions: These findings suggest SP-A may involve in the inflammation of COVID-19, while CIRBP likely plays a protective role. Therefore, DAMPs represent a potential target in the prevention or treatment of COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。