Mitochondrial protective effects of PARP-inhibition in hypertension-induced myocardial remodeling and in stressed cardiomyocytes

PARP 抑制对高血压引起的心肌重塑和应激心肌细胞的线粒体保护作用

阅读:5
作者:K Ordog, O Horvath, K Eros, K Bruszt, Sz Toth, D Kovacs, N Kalman, B Radnai, L Deres, F Gallyas Jr, K Toth, R Halmosi

Aims

During oxidative stress mitochondria become the main source of endogenous reactive oxygen species (ROS) production. In the present study, we aimed to clarify the effects of pharmacological PARP-1 inhibition on mitochondrial function and quality control processes. Main

Methods

L-2286, a quinazoline-derivative PARP inhibitor, protects against cardiovascular remodeling and heart failure by favorable modulation of signaling routes. We examined the effects of PARP-1 inhibition on mitochondrial quality control processes and function in vivo and in vitro. Spontaneously hypertensive rats (SHRs) were treated with L-2286 or placebo. In the in vitro model, 150 μM H2O2 stress was applied on neonatal rat cardiomyocytes (NRCM). Key findings: PARP-inhibition prevented the development of left ventricular hypertrophy in SHRs. The interfibrillar mitochondrial network were less fragmented, the average mitochondrial size was bigger and showed higher cristae density compared to untreated SHRs. Dynamin related protein 1 (Drp1) translocation and therefore the fission of mitochondria was inhibited by L-2286 treatment. Moreover, L-2286 treatment increased the amount of fusion proteins (Opa1, Mfn2), thus preserving structural stability. PARP-inhibition also preserved the mitochondrial genome integrity. In addition, the mitochondrial biogenesis was also enhanced due to L-2286 treatment, leading to an overall increase in the ATP production and improvement in survival of stressed cells. Significance: Our

Significance

Our results suggest that the modulation of mitochondrial dynamics and biogenesis can be a promising therapeutical target in hypertension-induced myocardial remodeling and heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。