Transgenic Overexpression of IL-37 Protects Against Atherosclerosis and Strengthens Plaque Stability

IL-37 的转基因过度表达可预防动脉粥样硬化并增强斑块稳定性

阅读:6
作者:Jing Liu, Jibin Lin, Shaolin He, Chun Wu, Boyuan Wang, Jie Liu, Yanping Duan, Tianxiao Liu, Shengshuai Shan, Keping Yang, Nianguo Dong, Qingwei Ji, Kai Huang, Dazhu Li

Aims

Recently, studies have shown that interleukin-37 (IL-37) is involved in atherosclerosis-related diseases. However, the regulatory mechanisms of IL-37 in atherosclerosis remain unknown. This study aims to determine the role of IL-37 in atherosclerosis and to investigate the underlying mechanisms involved.

Background/aims

Recently, studies have shown that interleukin-37 (IL-37) is involved in atherosclerosis-related diseases. However, the regulatory mechanisms of IL-37 in atherosclerosis remain unknown. This study aims to determine the role of IL-37 in atherosclerosis and to investigate the underlying mechanisms involved.

Conclusion

IL-37 may be a novel potential therapeutic target in patients with atherosclerotic heart disease.

Methods

IL-37 expression in human atherosclerotic plaques was detected by immunohistochemical staining and real-time reverse transcription polymerase chain reaction (RT-PCR). Oil Red O staining was used to measure the size of plaques. Cell apoptosis in vitro and in vivo was tested by flow cytometric analysis and terminal deoxynucleotidyl-transferase mediated dUTP nick-end labeling (TUNEL) staining, respectively. Protein expression levels of IL-37, IL-18Rα and p-Smad3 were measured by Weston blotting.

Results

Immunohistochemical staining revealed that IL-37 was highly expressed in human atherosclerotic plaques. Intracellular cytokine staining revealed that infiltrated CD4+ T lymphocytes and vascular smooth muscle cells (VSMCs), but not macrophages, were the major sources of IL-37. Mice that overexpressed IL-37 exhibited significant improvements in their atherosclerotic burden, as demonstrated by reduced plaque size, increased collagen levels, and reduced numbers of apoptotic cells in vivo. Subsequently, mechanistic studies showed that IL-37 played an anti-atherosclerotic role, at least partially, through reducing inflammation by promoting the differentiation of the T helper cell anti-inflammatory phenotype, and through increasing plaque stability by decreasing matrix metalloproteinase (MMP)-2/13-mediated degradation of collagen and inhibiting VSMCs apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。