Interaction between TRPML1 and p62 in Regulating Autophagosome-Lysosome Fusion and Impeding Neuroaxonal Dystrophy in Alzheimer's Disease

TRPML1 与 p62 相互作用调控自噬体-溶酶体融合及阻止阿尔茨海默病中的神经轴突营养不良

阅读:5
作者:Lu Zhang, Yu Fang, Xuan Cheng, Yajun Lian, Hongliang Xu

Abstract

The loss of transient receptor potential mucolipin 1 (TRPML1), an endosomal and lysosomal Ca2+-releasing channel, has been implicated in neurodegenerative disorders. Mounting evidence have shown that TRPML1 could clear intraneuronal amyloid-β (Aβ), which triggers a hypothesis that TRPML1 activation may be beneficial for axonal transport in Alzheimer's disease (AD). In this work, the functional roles of TRPML1 were studied in the APP/PS1 transgenic mice and Aβ1-42-stimulated hippocampal neurons HT22. We found that lentivirus-mediated overexpression of TRPML1 was shown to promote an accumulation of autolysosomes and increase brain-derived neurotrophic factor (BDNF) transportation to the nucleus, suggesting an axon-protective function. More importantly, we found that TRPML1 also increased p62 that interacted with dynein. Lentivirus-mediated knockdown of p62 or inhibition of dynein by ciliobrevin D stimulation was found to reduce autolysosome formation and nuclear accumulation of BDNF in HT22 cells with Aβ1-42 stimulation. Inhibition of p62 by XRK3F2 stimulation was observed to promote the death of hippocampal neurons of the APP/PS1 transgenic mice. TRPML1 recruited dynein by interacting with p62 to promote the autophagosome-lysosome fusion to mediate BDNF nuclear translocation to impede axon dystrophy in mice with Alzheimer-like phenotypes. In summary, these results demonstrate the presence of a TRPML1/p62/dynein regulatory network in AD, and activation of TRPML1 is required for axon protection to prevent neuroaxonal dystrophy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。