Exploring the molecular targets and mechanisms of [10]-Gingerol for treating triple-negative breast cancer using bioinformatics approaches, molecular docking, and in vivo experiments

利用生物信息学方法、分子对接和体内实验探索[10]-姜辣素治疗三阴性乳腺癌的分子靶点和机制

阅读:6
作者:Ping Huang #, Peijuan Zhou #, Yuqi Liang #, Jiahua Wu, Guosong Wu, Rui Xu, Yan Dai, Qianqian Guo, Hai Lu, Qianjun Chen

Background

Triple-negative breast cancer (TNBC) is the most aggressive among breast cancer subtypes with the worst prognosis. Ginger is widely used in pharmaceuticals and as food. Its anticancer properties are known, but the mechanism is still unclear. [10]-Gingerol is one of the main phenolic compounds isolated from ginger. Studying the biological effects of [10]-Gingerol is of great significance to understand the efficacy of ginger.

Conclusions

[10]-Gingerol affects the growth of TNBC through multiple action targets and participating in multiple action pathways. ADRB2 and apoptosis pathways might be important target pathways for [10]-Gingerol in the treatment of TNBC.

Methods

In this study, the therapeutic effects of [10]-Gingerol on TNBC cells were studied using network pharmacology, molecular docking, and in vitro experiments, and the target and mechanism of action were explained.

Results

A total of 48 targets of ginger for the treatment of TNBC were found. These targets might interfere with the growth of TNBC by participating in many pathways, such as endocrine resistance, progesterone-mediated oocyte maturation, estrogen signaling pathway, and cellular senescence. Prognostic analyses indicated that the JUN, FASN, ADRB2, ADRA2A, and PGR were the hub genes, while molecular docking predicted the stable binding of ADRB2 protein with drug compounds. Additionally, [10]-Gingerol could induce apoptosis by regulating the caspase activation. Conclusions: [10]-Gingerol affects the growth of TNBC through multiple action targets and participating in multiple action pathways. ADRB2 and apoptosis pathways might be important target pathways for [10]-Gingerol in the treatment of TNBC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。