Dynamic Transcriptional and Epigenetic Changes Drive Cellular Plasticity in the Liver

动态的转录和表观遗传变化驱动肝脏细胞可塑性

阅读:1
作者:Allyson J Merrell # ,Tao Peng # ,Jinyang Li ,Kathryn Sun ,Bin Li ,Takeshi Katsuda ,Markus Grompe ,Kai Tan ,Ben Z Stanger

Abstract

Background and aims: Following liver injury, a fraction of hepatocytes adopt features of biliary epithelial cells (BECs) in a process known as biliary reprogramming. The aim of this study was to elucidate the molecular events accompanying this dramatic shift in cellular identity. Approach and results: We applied the techniques of bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, and assay for transposase-accessible chromatin with high-throughput sequencing to define the epigenetic and transcriptional changes associated with biliary reprogramming. In addition, we examined the role of TGF-β signaling by profiling cells undergoing reprogramming in mice with hepatocyte-specific deletion in the downstream TGF-β signaling component mothers against decapentaplegic homolog 4 (Smad4). Biliary reprogramming followed a stereotyped pattern of altered gene expression consisting of robust induction of biliary genes and weaker repression of hepatocyte genes. These changes in gene expression were accompanied by corresponding modifications at the chromatin level. Although some reprogrammed cells had molecular features of "fully differentiated" BECs, most lacked some biliary characteristics and retained some hepatocyte characteristics. Surprisingly, single-cell analysis of Smad4 mutant mice revealed a dramatic increase in reprogramming. Conclusion: Hepatocytes undergo widespread chromatin and transcriptional changes during biliary reprogramming, resulting in epigenetic and gene expression profiles that are similar to, but distinct from, native BECs. Reprogramming involves a progressive accumulation of biliary molecular features without discrete intermediates. Paradoxically, canonical TGF-β signaling through Smad4 appears to constrain biliary reprogramming, indicating that TGF-β can either promote or inhibit biliary differentiation depending on which downstream components of the pathway are engaged. This work has implications for the formation of BECs and bile ducts in the adult liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。