Chemical probes for spatially resolved measurement of active enzymes in single cells

用于空间分辨测量单细胞中活性酶的化学探针

阅读:7
作者:Gang Li, Raymond E Moellering

Abstract

Ongoing advances in chemical proteomic methods have facilitated detection and quantification of enzymatic activity, a highly informative parameter that is not captured in protein abundance measurements. However, some biological questions remain unanswered, since current gel- or LC-MS/MS-based detection methods suffer from limitations stemming from sample homogenization, signal-averaging, and an inherent bias toward abundant proteins. To address these shortcomings, we recently developed an activity-based proximity ligation (ADPL) platform to capture and quantify enzyme activity on the level of single cells, with high intra- and intercellular spatial resolution. In this chapter, we briefly discuss the rationale behind the ADPL platform, the design transition from the initial "sandwich-complex" workflow to the optimized, "direct conjugate" ADPL method, and conclude with detailed protocols for each. We also describe our novel use of the homo-bifunctional linker, disuccinimidyl suberate (DSS), to conjugate proteins and oligonucleotides, thus generating the necessary antibody-oligonucleotide recognition reagents for ADPL. Finally, we demonstrate the utility of ADPL to characterize enzyme activity from cytosol to nucleus, and specifically detect enzyme activity using "direct conjugate" ADPL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。