Actions of Esomeprazole on the Maternal Vasculature in Lean and Obese Pregnant Mice with Impaired Nitric Oxide Synthesis: A Model of Preeclampsia

埃索美拉唑对一氧化氮合成受损的瘦型和肥胖型妊娠小鼠母体血管的作用:先兆子痫模型

阅读:6
作者:Natasha de Alwis, Natalie K Binder, Yeukai T M Mangwiro, Sally Beard, Natasha Pritchard, Elif Kadife, Bianca R Fato, Emerson Keenan, Fiona C Brownfoot, Tu'uhevaha J Kaitu'u-Lino, Natalie J Hannan

Abstract

Preeclampsia is a devastating, multisystem disorder of pregnancy. It has no cure except delivery, which if premature can impart significant neonatal morbidity. Efforts to repurpose pregnancy-safe therapeutics for the treatment of preeclampsia have led to the assessment of the proton pump inhibitor, esomeprazole. Preclinically, esomeprazole reduced placental secretion of anti-angiogenic sFlt-1, improved endothelial dysfunction, promoted vasorelaxation, and reduced maternal hypertension in a mouse model. Our understanding of the precise mechanisms through which esomeprazole works to reduce endothelial dysfunction and enhance vasoreactivity is limited. Evidence from earlier studies suggested esomeprazole might work via the nitric oxide pathway, upregulating endothelial nitric oxide synthase (eNOS). Here, we investigated the effect of esomeprazole in a mouse model of L-NAME-induced hypertension (decreased eNOS activity). We further antagonised the model by addition of diet-induced obesity, which is relevant to both preeclampsia and the nitric oxide pathway. Esomeprazole did not decrease blood pressure in this model, nor were there any alterations in vasoreactivity or changes in foetal outcomes in lean mice. We observed similar findings in the obese mouse cohort, except esomeprazole treatment enhanced ex vivo acetylcholine-induced vasorelaxation. As acetylcholine induces nitric oxide production, these findings hint at a function for esomeprazole in the nitric oxide pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。