Tellu - an object-detector algorithm for automatic classification of intestinal organoids

Tellu - 一种用于自动分类肠道类器官的物体检测算法

阅读:5
作者:Eva Domènech-Moreno, Anders Brandt, Toni T Lemmetyinen, Linnea Wartiovaara, Tomi P Mäkelä, Saara Ollila

Abstract

Intestinal epithelial organoids recapitulate many of the in vivo features of the intestinal epithelium, thus representing excellent research models. Morphology of the organoids based on light-microscopy images is used as a proxy to assess the biological state of the intestinal epithelium. Currently, organoid classification is manual and, therefore, subjective and time consuming, hampering large-scale quantitative analyses. Here, we describe Tellu, an object-detector algorithm trained to classify cultured intestinal organoids. Tellu was trained by manual annotation of >20,000 intestinal organoids to identify cystic non-budding organoids, early organoids, late organoids and spheroids. Tellu can also be used to quantify the relative organoid size, and can classify intestinal organoids into these four subclasses with accuracy comparable to that of trained scientists but is significantly faster and without bias. Tellu is provided as an open, user-friendly online tool to benefit the increasing number of investigations using organoids through fast and unbiased organoid morphology and size analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。