Tumor necrosis factor-α promotes airway mucus hypersecretion by repressing miR-146a-5p and miR-134-5p levels in human airway epithelial cells

肿瘤坏死因子-α通过抑制人气道上皮细胞中的 miR-146a-5p 和 miR-134-5p 水平促进气道黏液高分泌

阅读:5
作者:Hui-Ting Fu #, Yan Zhang #, Ping Zhang, Huan Wu, Xuan-Qiu Sun, Shu-Yang Shen, Dan-Bo Dou

Background

Airway mucus acts as an indispensable protective component of innate immune response against invading pathogens. However, airway mucus hypersecretion, largely consisting of mucin 5AC (MUC5AC), is the leading cause of airflow obstruction and airway hyperresponsiveness that contributes to chronic obstructive pulmonary disease (COPD). MicroRNAs (miRNAs) are frequently dysregulated in the pathogenesis of COPD, but the definite role of miRNAs in airway mucus hypersecretion is not well understood.

Conclusions

The current data demonstrated that both miR-134-5p and miR-146a-5p conferred protection against TNF-α-induced mucus hypersecretion through repressing NF-κB and p38 MAPK signaling, indicating that miR-134-5p and miR-146a-5p may serve as the biomarker for COPD.

Methods

A cell model of mucus hypersecretion was established in 16HBE cells by treatment with TNF-α. Cell viability and apoptosis were assessed using cell counting kit-8 (CCK-8) and flow cytometry, respectively. The aberrant expression of miR-146a-5p and miR-134-5p was assayed in TNF-α-treated 16HBE cells, and the effect of miR-146a-5p and miR-134-5p on regulating MUC5AC expression was evaluated using quantitative real-time PCR (qPCR) and Western blot analysis.

Results

TNF-α treatment resulted in a significant decrease of cell viability, and increase of cell apoptosis and MUC5AC expression in 16HBE cells. Additionally, the expression of miR-134-5p and miR-146a-5p was markedly decreased in the cell model. Importantly, forced expression of miR-134-5p and miR-146a-5p significantly repressed TNF-α-induced upregulation of MUC5AC. Mechanistically, although miR-134-5p did not affect 16HBE cells viability and apoptosis, miR-134-5p partially blocked TNF-α-induced MUC5AC expression by inhibiting the activation of NF-κB signaling. On the other hand, miR-146a-5p enhanced cell viability and reduced cell apoptosis. miR-146a-5p also repressed TNF-α-induced MUC5AC expression by inhibiting p38 MAPK (mitogen-activated protein kinase) signaling activation. Conclusions: The current data demonstrated that both miR-134-5p and miR-146a-5p conferred protection against TNF-α-induced mucus hypersecretion through repressing NF-κB and p38 MAPK signaling, indicating that miR-134-5p and miR-146a-5p may serve as the biomarker for COPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。