EIF3D promotes sunitinib resistance of renal cell carcinoma by interacting with GRP78 and inhibiting its degradation

EIF3D 通过与 GRP78 相互作用并抑制其降解促进肾细胞癌对舒尼替尼的耐药性

阅读:5
作者:Hai Huang, Yi Gao, Ao Liu, Xiaoqun Yang, Fang Huang, Le Xu, Xu Danfeng, Lu Chen

Background

Sunitinib is one of the multi-targeted tyrosine kinase inhibitors for the treatment of renal cell carcinoma (RCC) at present. However, its clinical efficacy is limited by chemoresistance of RCC. Our previous study found that eukaryotic translation initiation factor 3 subunit D (EIF3D) was an oncogene in the development and progression of RCC but little is known about whether EIF3D participated in sunitinib resistance of RCC.

Methods

The expression of EIF3D in the tumor tissue specimen was detected by immunohistochemistry. The effect of EIF3D on sunitinib-resistance of RCC cells was evaluated by colony formation, IC50 proliferation and in vivo tumor growth assays. The interaction between EIF3D and glucose regulated protein 78 (GRP78) was assessed by Co-IP and Western blot assays. Finding: EIF3D expression was found higher in 786-OR and ACHN-R cells with acquired sunitinib resistance than that in 786-O and ACHN cells sunitinib to sensitive. The EIF3D level was also up-regulated in sunitinib-chemoresistant tumor tissues compared with chemosensitive tumor tissues. Functional study showed that EIF3D knockdown decreased cell viability with sunitinib treatment. Mechanistical study demonstrated that EIF3D interacted with GRP78 and enhanced protein stability through blocking the ubiquitin-mediated-proteasome degradation of GRP78. GRP78 overexpression induced sunitinib resistance of RCC cells by triggering the unfolded protein response, whereas GRP78 silencing inhibited cell viability. Forced expression of GRP78 eliminated the inhibitory effect of EIF3D silencing on cell growth in vitro and in vivo. Interpretation: our

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。