Coordination of intercellular Ca(2+) signaling in endothelial cell tubes of mouse resistance arteries

小鼠阻力动脉内皮细胞管内细胞间Ca(2+)信号的协调

阅读:11
作者:Matthew J Socha, Timothy L Domeier, Erik J Behringer, Steven S Segal

Conclusions

With moderate GPCR stimulation, localized Ca(2+) release events predominate among cells. Greater GPCR stimulation evokes coordinated intercellular Ca(2+) waves via the ER. Calcium signaling during GPCR activation is complex among cells, varying with stimulus intensity and proximity to actively signaling cells.

Methods

EC tubes were freshly isolated from superior epigastric arteries of C57BL/6 mice. Intercellular coupling was tested using microinjection of propidium iodide. Following loading with fluo-4 dye, intracellular Ca(2+) responses to ACh were imaged with confocal microscopy.

Objective

To test the hypothesis that Ca(2+) responses to GPCR activation are coordinated between neighboring ECs of resistance arteries.

Results

Cell-to-cell transfer of propidium iodide confirmed functional GJCs. A 1 μm ACh stimulus evoked Ca(2+) responses (9.8 ± 0.8/min, F/F(0) = 3.11 ± 0.2) which pseudo-line-scan analysis revealed as composed of Ca(2+) waves and spatially restricted Ca(2+) release events. A 100 nm ACh stimulus induced Ca(2+) responses of lower frequency (4.5 ± 0.7/min) and amplitude (F/F(0) = 1.95 ± 0.11) composed primarily of spatially restricted events. The time interval between Ca(2+) waves in adjacent cells (0.79 ± 0.12 s) was shorter (p < 0.05) than that between nonadjacent cells (1.56 ± 0.25 s). Spatially restricted Ca(2+) release events had similar frequencies and latencies between adjacent and nonadjacent cells. Inhibiting intracellular Ca(2+) release with 2-APB, Xestospongin C or thapsigargin eliminated Ca(2+) responses. Conclusions: With moderate GPCR stimulation, localized Ca(2+) release events predominate among cells. Greater GPCR stimulation evokes coordinated intercellular Ca(2+) waves via the ER. Calcium signaling during GPCR activation is complex among cells, varying with stimulus intensity and proximity to actively signaling cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。