Offline two-dimensional liquid chromatography coupled with ion mobility-quadrupole time-of-flight mass spectrometry enabling four-dimensional separation and characterization of the multicomponents from white ginseng and red ginseng

离线二维液相色谱与离子淌度四极杆飞行时间质谱联用,实现白参和红参中多组分的四维分离和表征

阅读:6
作者:Tiantian Zuo, Chunxia Zhang, Weiwei Li, Hongda Wang, Ying Hu, Wenzhi Yang, Li Jia, Xiaoyan Wang, Xiumei Gao, Dean Guo

Abstract

Inherent complexity of plant metabolites necessitates the use of multi-dimensional information to accomplish comprehensive profiling and confirmative identification. A dimension-enhanced strategy, by offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS) enabling four-dimensional separations (2D-LC, IM, and MS), is proposed. In combination with in-house database-driven automated peak annotation, this strategy was utilized to characterize ginsenosides simultaneously from white ginseng (WG) and red ginseng (RG). An offline 2D-LC system configuring an Xbridge Amide column and an HSS T3 column showed orthogonality 0.76 in the resolution of ginsenosides. Ginsenoside analysis was performed by data-independent high-definition MSE (HDMSE) in the negative ESI mode on a Vion™ IMS-QTOF hybrid high-resolution mass spectrometer, which could better resolve ginsenosides than MSE and directly give the CCS information. An in-house ginsenoside database recording 504 known ginsenosides and 58 reference compounds, was established to assist the identification of ginsenosides. Streamlined workflows, by applying UNIFI™ to automatedly annotate the HDMSE data, were proposed. We could separate and characterize 323 ginsenosides (including 286 from WG and 306 from RG), and 125 thereof may have not been isolated from the Panax genus. The established 2D-LC/IM-QTOF-HDMSE approach could also act as a magnifier to probe differentiated components between WG and RG. Compared with conventional approaches, this dimension-enhanced strategy could better resolve coeluting herbal components and more efficiently, more reliably identify the multicomponents, which, we believe, offers more possibilities for the systematic exposure and confirmative identification of plant metabolites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。