Chemotherapy induced damage to spermatogonial stem cells in prepubertal mouse in vitro impairs long-term spermatogenesis

化疗引起青春期前小鼠精原干细胞体外损伤,损害长期精子发生

阅读:5
作者:Federica Lopes, Prathima Tholeti, Satish K Adiga, Richard A Anderson, Rod T Mitchell, Norah Spears

Abstract

Chemotherapy can affect testis development of young boys with cancer, reducing the chances of fatherhood in adulthood. Studies using experimental models are needed to determine the damage caused by individual chemotherapy drugs in order to predict the risk of infertility and direct patients towards appropriate fertility preservation options. Here, we investigated the individual role of two drugs, cisplatin and doxorubicin, using an in vitro culture model of prepubertal (postnatal day 5) mouse testis that supports induction and maintenance of full spermatogenesis. Twenty-four hour exposure with either drug at clinically-relevant doses (0.25, 0.5 or 0.75 μg/mL for cisplatin, or 0.01, 0.03 or 0.05 μg/mL for doxorubicin), induced an acute significant loss of spermatogonial stem cells (SSCs; PLZF+), proliferating SSCs (PLZF+BrdU+), total germ cells (MVH+), and spermatocytes (SCP3+) one week after chemotherapy exposure. By the time of the first (Week 4) and second (Week 8) waves of spermatogenesis, there was no longer any effect on SSC or proliferating SSC numbers in drug-exposed testis compared to untreated tissue: however, the populations of total germ cells and spermatocytes were still lower in the higher-dose cisplatin treated groups, along with a reduced frequency of round and elongated spermatids in both cisplatin- and doxorubicin-treated testis fragments. Overall, this study details a direct impairment of germ cell development following acute chemotherapy-induced damage during the prepubertal phase, most likely due to an effect on SSCs, using an in vitro culture system that successfully recapitulates key events of mouse spermatogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。