PGC-1α attenuates the oxidative stress-induced impaired osteogenesis and angiogenesis regulation effects of mesenchymal stem cells in the presence of diabetic serum

PGC-1α 减轻糖尿病血清存在下氧化应激引起的间充质干细胞成骨和血管生成调控作用

阅读:5
作者:Zongxin Shi, Shikun Wang, Jiechao Deng, Zishun Gong

Abstract

Oxidative stress is believed to induce dysfunction of the bone remodeling process and be associated with progressive loss of bone mass. The peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a master controller during mitochondrial biogenesis and the antioxidant response. We postulated that PGC-1α could function as a cyto-protective effector in mesenchymal stem cells (MSCs) under oxidative stress conditions. In this study, diabetic serum was firstly used to treat MSCs to induce oxidative damage. The anti-oxidative protective effects of PGC-1α overexpression on MSCs, as well as MSCs' osteogenesis and angiogenic regulation effects were investigated in vitro. Results showed that diabetic conditions induced significantly increase of intracellular oxidative damage and mitochondrial permeability transition pore (mPTP) opening activity, decrease of cellular viability, and osteogenic differentiation and pro-angiogenic regulation effects of MSCs. However, the diabetic conditions induced oxidative impair on MSCs were significantly alleviated via PGC-1α overexpression under diabetic conditions. Taken together, this study indicates the anti-oxidative treatment potential of PGC-1α regulation as a promising strategy to promote coupling pro-osteogenesis and pro-angiogenesis effects of MSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。