Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma

Mastermind-Like 3 控制神经母细胞瘤的增殖和分化

阅读:8
作者:Guus J J E Heynen, Ekaterina Nevedomskaya, Sander Palit, Noorjahan Jagalur Basheer, Cor Lieftink, Andreas Schlicker, Wilbert Zwart, Rene Bernards, Prashanth Kumar Bajpe

Abstract

Neuroblastoma cell lines can differentiate upon treatment with retinoic acid (RA), a finding that provided the basis for the clinical use of RA to treat neuroblastoma. However, resistance to RA is often observed, which limits its clinical utility. Using a gain-of-function genetic screen, we identified an unexpected link between RA signaling and mastermind-like 3 (MAML3), a known transcriptional coactivator for NOTCH. Our findings indicate that MAML3 expression leads to the loss of activation of a subset of RA target genes, which hampers RA-induced differentiation and promotes resistance to RA. The regulatory DNA elements of this subset of RA target genes show overlap in binding of MAML3 and the RA receptor, suggesting a direct role for MAML3 in the regulation of these genes. In addition, MAML3 has RA-independent functions, including the activation of IGF1R and downstream AKT signaling via upregulation of IGF2, resulting in increased proliferation. These results demonstrate an important mechanistic role for MAML3 in proliferation and RA-mediated differentiation. Implications: MAML3 coordinates transcription regulation with receptor tyrosine kinase pathway activation, shedding new light on why this gene is mutated in multiple cancers. Mol Cancer Res; 14(5); 411-22. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。