AMPK phosphorylates and stabilises copper transporter 1 to synergise metformin and copper chelator for breast cancer therapy

AMPK 磷酸化并稳定铜转运蛋白 1,以协同二甲双胍和铜螯合剂用于乳腺癌治疗

阅读:5
作者:Xiaomei Zhang #, Qiwei Jiang #, Yaqing Su, Lang Bu, Zicheng Sun, Xueji Wu, Bing Gao, Lei Wang, Ying Lin, Wei Xie, Jianping Guo

Background

Predominant roles of copper and its transporter, copper transporter 1 (CTR1), in tumorigenesis have been explored recently; however, the upstream regulation of CTR1 and combinational intervention of copper chelators in malignancies remain largely unclear.

Conclusions

Our findings not only reveal the crosstalk between energy response and copper uptake via AMPK-mediated CTR1 phosphorylation and stability but also highlight the strategy to combat breast cancer by a combination of AMPK agonists and copper chelators. Significance: The connection between energy response and copper homoeostasis is linked by AMPK phosphorylating and stabilising CTR1, which provides a promising strategy to combat breast cancer by combining AMPK agonists and copper chelators.

Methods

CRISPR/Cas9-based kinome screening was used to identify the CTR1 upstream kinases. Immunofluorescence assays were utilised to detect CTR1 localisation. In vitro kinase assays and mass spectrometry were performed to detect CTR1 phosphorylation. Ubiquitination assays were performed to validate CTR1 stability. Colony formation, EdU labelling, Annexin V-FITC/PI-based apoptosis assays were carried out to detect the drug effect on cell growth and apoptosis. Xenografted mouse models were employed to investigate drug effects in vivo.

Results

We identify that CTR1 undergoes AMPK-mediated phosphorylation, which enhances CTR1 stabilisation and membrane translocation by affecting Nedd4l interaction, resulting in increased oncogenic roles in breast cancer. Importantly, activation of AMPK with its agonist metformin markedly enhances CTR1 levels, and leads to the combinational usage of AMPK agonists and copper chelators for breast cancer treatment. Conclusions: Our findings not only reveal the crosstalk between energy response and copper uptake via AMPK-mediated CTR1 phosphorylation and stability but also highlight the strategy to combat breast cancer by a combination of AMPK agonists and copper chelators. Significance: The connection between energy response and copper homoeostasis is linked by AMPK phosphorylating and stabilising CTR1, which provides a promising strategy to combat breast cancer by combining AMPK agonists and copper chelators.

Significance

The connection between energy response and copper homoeostasis is linked by AMPK phosphorylating and stabilising CTR1, which provides a promising strategy to combat breast cancer by combining AMPK agonists and copper chelators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。