Enhancing prognostic accuracy in head and neck squamous cell carcinoma chemotherapy via a lipid metabolism-related clustered polygenic model

通过脂质代谢相关的聚集多基因模型提高头颈部鳞状细胞癌化疗的预后准确性

阅读:4
作者:Xiangwan Miao #, Hao Wang #, Cui Fan #, QianQian Song, Rui Ding, Jichang Wu, Haixia Hu, Kaili Chen, Peilin Ji, Qing Wen, Minmin Shi, Bin Ye, Da Fu, Mingliang Xiang

Conclusion

In conclusion, the LMRS polygenic prognostic model is helpful to assess outcome and drug response for HNSCCs and could assist in the timely selection of the appropriate treatment for HNSCC patients. This study provides important insights for improving systemic chemotherapy and enhancing patient outcomes.

Methods

This study utilized CRISPR/cas9 whole gene loss-of-function library screening and data from The Cancer Genome Atlas (TCGA) HNSCC patients who have undergone systemic therapy to examine differentially expressed genes (DEGs). A lipid metabolism-related clustered polygenic model called the lipid metabolism related score (LMRS) model was established based on the identified functionally enriched DEGs. The prediction efficiency of the model for survival outcome, chemotherapy, and immunotherapy response was evaluated using HNSCC datasets, the GEO database and clinical samples.

Objective

Systemic chemotherapy is the first-line therapeutic option for head and neck squamous cell carcinoma (HNSCC), but it often fails. This study aimed to develop an effective prognostic model for evaluating the therapeutic effects of systemic chemotherapy.

Results

Screening results from the study demonstrated that genes those were differentially expressed were highly associated with lipid metabolism-related pathways, and patients receiving systemic therapy had significantly different prognoses based on lipid metabolism gene characteristics. The LMRS model, consisting of eight lipid metabolism-related genes, outperformed each lipid metabolism gene-based model in predicting outcome and drug response. Further validation of the LMRS model in HNSCCs confirmed its prognostic value.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。