Suppressing Mesenchymal Stromal Cell Ferroptosis Via Targeting a Metabolism-Epigenetics Axis Corrects their Poor Retention and Insufficient Healing Benefits in the Injured Liver Milieu

通过靶向代谢-表观遗传学轴抑制间充质基质细胞铁死亡可纠正其在受损肝脏环境中的保留性较差和愈合效益不足

阅读:7
作者:Guangyu Hu, Zhe Cui, Xiyao Chen, Fangfang Sun, Tongzheng Li, Congye Li, Ling Zhang, Xiong Guo, Hang Zhao, Yunlong Xia, Wenjun Yan, Wei Yi, Miaomiao Fan, Rongjin Yang, Shan Wang, Ling Tao, Fuyang Zhang

Abstract

Mesenchymal stromal cell (MSC) implantation is a promising option for liver repair, but their poor retention in the injured liver milieu critically blunts therapeutic effects. The aim is to clarify the mechanisms underlying massive MSC loss post-implantation and establish corresponding improvement strategies. MSC loss primarily occurs within the initial hours after implantation into the injured liver milieu or under reactive oxygen species (ROS) stress. Surprisingly, ferroptosis is identified as the culprit for rapid depletion. In ferroptosis- or ROS-provoking MSCs, branched-chain amino acid transaminase-1 (BCAT1) is dramatically decreased, and its downregulation renders MSC susceptible to ferroptosis via suppressing the transcription of glutathione peroxidase-4 (GPX4), a vital ferroptosis defensing enzyme. BCAT1 downregulation impedes GPX4 transcription via a rapid-responsive metabolism-epigenetics coordinating mechanism, involving α-ketoglutarate accumulation, histone 3 lysine 9 trimethylation loss, and early growth response protein-1 upregulation. Approaches to suppress ferroptosis (e.g., incorporating ferroptosis inhibitors in injection solvent and overexpressing BCAT1) significantly improve MSC retention and liver-protective effects post-implantation. This study provides the first evidence indicating that excessive MSC ferroptosis is the nonnegligible culprit for their rapid depletion and insufficient therapeutic efficacy after implantation into the injured liver milieu. Strategies suppressing MSC ferroptosis are conducive to optimizing MSC-based therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。