Sub-parts per billion detection of trace volatile chemicals in human breath using selected ion flow tube mass spectrometry

使用选择离子流管质谱法检测人体呼吸中十亿分之一以下的痕量挥发性化学物质

阅读:6
作者:Brian M Ross

Background

Selected ion flow tube mass spectrometry (SIFT-MS) allows the real time quantification of trace gases in air. Due to its tolerance of high humidity levels the technique is particularly suited to the chemical analysis of breath. The detection limit of SIFT-MS has previously reported to be approximately 5 - 10 PPBV which is insufficient for the measurement of some low abundance constituents of breath. Recent developments in the design of SIFT-MS instruments have increased the ion precursor count rates. It is, however, unclear as to how these advances will affect instrument sensitivity for breath analysis. Findings: Standard gases were prepared by adding known quantities of compounds present at zero or very low levels in breath (xylene and toluene) to either humidified bottled air or actual human breath. These were then analysed by SIFT-MS to calculate the limits of detection for each compound under conditions which mimic a single breath exhalation. For xylene and toluene the limits of detection was approximately 0.5 PPBV per 10 seconds of analysis time.

Conclusion

Recent advances in SIFT-MS have increased the techniques sensitivity for breath analysis into the sub PPBV range enabling the real time quantification of low level trace gases in human breath.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。