The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone

成骨细胞向骨细胞的转变:表观遗传变化和对维生素 D3 激素的反应

阅读:8
作者:Hillary C St John, Kathleen A Bishop, Mark B Meyer, Nancy A Benkusky, Ning Leng, Christina Kendziorski, Lynda F Bonewald, J Wesley Pike

Abstract

Osteocytes are derived from osteoblast lineage cells that become progressively embedded in mineralized bone. Development of the osteocytogenic cell line IDG-SW3 has enabled a temporal and mechanistic investigation of this process. Through RNA-sequencing analyses, we show that although substantial changes in gene expression occur during the osteoblast to osteocyte transition, the majority of the transcriptome remains qualitatively osteoblast like. Genes either up-regulated or expressed uniquely in the osteocyte include local and systemic factors such as Sost and Fgf23 as well as genes implicated in neuronal, muscle, vascular, or regulatory function. As assessed by chromatin immunoprecipitation coupled to high-throughput sequencing, numerous changes in epigenetic histone modifications also occur during osteocytogenesis; these are largely qualitative rather than quantitative. Specific epigenetic changes correlate with altered gene expression patterns that are observed during the transition. These genomic changes likely influence the highly restricted transcriptomic response to 1,25(OH)(2)D(3) that occurs during differentiation. VDR binding in osteocytes revealed an extensive cistrome co-occupied by retinoid X receptor and located predominantly at sites distal to regulated genes. Although sites of VDR binding were apparent near many 1,25(OH)(2)D(3)-regulated genes, the expression of others adjacent to VDR-binding sites were unaffected; lack of VDR binding was particularly prevalent at down-regulated genes. Interestingly, 1,25(OH)(2)D(3) was found to induce the Boc and Cdon coreceptors that are active in hedgehog signaling in osteocytes. We conclude that osteocytogenesis is accompanied by changes in gene expression that may be driven by both genetic and epigenetic components. These changes are likely responsible for the osteocyte phenotype and may contribute to reduced sensitivity to 1,25(OH)(2)D(3).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。